Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata.
نویسندگان
چکیده
GABA neurons in the substantia nigra pars reticulata receive input from GABAergic fibers originating in the forebrain. The role of dopaminergic D1 receptors located on these fibers was investigated using tight-seal whole-cell recordings from visually identified pars reticulata neurons of rat substantia nigra slices. Nondopaminergic pars reticulata neurons were characterized by their electrophysiological properties. Postsynaptic currents evoked by minimal stimulation in the presence of ionotropic glutamate receptor antagonists were blocked by bicuculline, indicating that they were GABAA IPSCs. Evoked GABAA IPSCs were potentiated by D1 receptor agonists. After application of D1 receptor agonists, miniature IPSCs [recorded in the presence of tetrodotoxin (TTX) and the Ca2+ channel blocker Cd2+] increased in frequency but not in amplitude. Effects of D1 receptor stimulation were mimicked by forskolin, as expected, if a cAMP-dependent mechanism was involved. The D1 antagonist SCH23390 blocked the effects of the agonists, and perfusion with SCH23390 resulted in a reduction of evoked IPSCs. In TTX and Cd2+, which prevented dopamine release, the D1 antagonist had no effect on miniature IPSCs. Blocking of monoamine uptake by imipramine increased the amplitude of evoked IPSCs. We conclude that dopamine released from dendrites of dopaminergic neurons enhances GABA release in the pars reticulata of the substantia nigra through D1 receptors presumably located on striatonigral afferents. These D1 receptors, thereby, can reinforce D1 receptor-mediated activation of striatal projection neurons that inhibit the inhibitory output neurons of the basal ganglia in substantia nigra.
منابع مشابه
Differential tonic GABA conductances in striatal medium spiny neurons.
Medium spiny neurons (MSNs) provide the principal output for the dorsal striatum. Those that express dopamine D2 receptors (D2+) project to the globus pallidus external and are thought to inhibit movement, whereas those that express dopamine D1 receptors (D1+) project to the substantia nigra pars reticulata and are thought to facilitate movement. Whole-cell and outside-out patch recordings in s...
متن کاملImmunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy.
The modulatory actions of dopamine on the flow of cortical information through the basal ganglia are mediated mainly through two subtypes of receptors, the D1 and D2 receptors. In order to examine the precise cellular and subcellular location of these receptors, immunocytochemistry using subtype specific antibodies was performed on sections of rat basal ganglia at both the light and electron mi...
متن کاملSubstantia nigra D1 receptors and stimulation of striatal cholinergic interneurons by dopamine: a proposed circuit mechanism.
Dopamine release can regulate striatal acetylcholine efflux in vivo through at least two receptor mechanisms: (1) direct inhibition by dopamine D2 receptors on the cholinergic neurons, and (2) excitation initiated by dopamine D1 receptors. The neuroanatomical locus of the latter population of D1 receptors and the pathway(s) involved in the expression of their influence are controversial issues....
متن کاملGABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.
Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...
متن کاملControl of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.
The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1998